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Motivation
Kernels learned on large and small datasets:
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How to construct a prior that will favor the
specific structure of learned kernels?

Contributions

Propose a Deep Weight Prior that:

e Favors the structure of learned convolution kernels
e Allows learning hierarchical prior with a stochastic VI
e Improves few-shot classification performance

Bayesian Neural Networks
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Aims to approximate p(W|X, y) via minimization:

KL(gs(W) || p(W | X,Y)) = min

Variational Inference reduces the problem to
maximization of variational lower bound (vlb):
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Deep Weight Prior
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How to find a distribution p;(w)that has a
high density for kernels of learned CNNs?

Let's use generative models (VAE)!
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Variational Inference for Hierarchical Prior
K L(go(w;;) || pr(w};)) = —H(gg) +
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Intractable

Upper bound the intractable term:
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Learned part

Reverse Model

Construct an auxiliary lower bound:

LO)=Lp+ H(qe) =Y
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Learning Deep Weight Prior

1.Train CNNs on large source 1D+
2.Collect dataset S of kernels
3.Train dwp p(W)using S

4.Use the prior for VI on a small -

MNIST Few-Short Classification

We compare the performance of a Bayesian CNN with
4 different prior distributions with limited training data:
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(b) Learned filters (¢) Samples from DWP

Fast Convergence: VAE and ConvNet
We compare different kernel initialization techniques :
e Learned filters e Samples from dwp
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